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Duality of two-point functions for confining potentials
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An analog to the scattering matrix describes the spectrum and high-energy behavior of confined

systems. We show that for nonrelativistic systems this S matrix is identical to a two-point function
which transparently describes the bound states for all angular momenta. Confined systems can thus
be described in a dual fashion. This result makes it possible to study the modification of linear tra-
jectories (originating in a long-range confining potential) due to short-range forces which are un-

known except for the way in which they modify the asymptotic behavior of the two-point function.
A type of effective-range expansion is one way to calculate the energy shifts.

I. INTRQDUCTIGN

Calculation of the spectrum of quantum chromodynam-
ics (QCD) remains one of the central goals of particle
physics. Indeed, the general problem of the calculation of
the bound states of any strong-coupling quantum field
theory is unsolved save for the case of static models. '

This problem would be solved if the full analytic behavior
of scattering amplitudes, or four-point functions, were
known, because the poles of these amplitudes in those
channels with the appropriate quantum numbers describe
the bound states. This is in fact the procedure followed in
using the Veneziano amplitudes in dual models for a
zero-width approximation. Unfortunately, the only
manageable method for getting bound states in quantum
field theory, the Bethe-Salpeter equation with a kernel
arising from a finite set of exchanges, is inadequate in
QCD, where an infinite number of bound states is expect-
ed. Calculations based on truncation of the Dyson-
Schwinger equations for QCD suggest confinement
without providing a mechanism for calculating the spec-
trum.

An alternative scheme avoids the scattering amplitude.
The two-point function of generahzed currents carrying
the desired quantum numbers will have an absorptive part
with peaks at the location of the corresponding peaks of
the physical spectrum. The fact that two-point functions
depend on only a single kinematic variable presents both
an advantage and a difficulty. On the one hand their
structure is much simpler and easier to calculate. On the
other hand, the kind of connection between bound states
of different angular momentum that manifests itself in
scattering amplitudes via the analytic behavior in angular
momentum is, on the surface at least, absent from the
two-point function. Thus it is, for example, not clear how
the structure of a spin-1 two-point function

i J d x e' '"(0
~
T(J&(x)j,(0))

~
0), j& uy——&u,

and the spin-2 two-point function

i J d x e' "(0
~
T(j„„(xj)ap(0))

~
0),

Jpv u(Xp~v+) v p igpv~)u

are related. Nevertheless, such a connection must exist; in
this paper we shall show how in potential theory for a
confining potential there is a single function which de-
scribes a/I the bound-state poles.

In studying duality, we are interested in connecting the
asymptotic behavior of the two-point function to the posi-
tions of bound-state poles. This connection is made
through consideration of two functions. The first is the
nonrelativistic quantum-mechanical analog of the two-
point function itself, which is a spectral sum over the
eigenstates. A special case of this function has been con-
sidered by Vainshtein, Zakharov, Novikov, and Shifman
in the context of the nonrelativistic version of the QCD
sum rules, and by Bell and Bertlmann. The most
thorough examination of the validity of these sum rules
has been carried out by Durand, Durand, and Whitenton.
The two-point function provides direct information on the
bound states. The second function is the analog of the
scattering matrix for a confining potential, namely the
coefficient of the regular solution to Schrodinger s equa-
tion in a solution which vanishes at large distances. This
quantity is simple to calculate at large momentum. One
of the central results of this paper is the establishment of
the identity of the two-point function and the S matrix for
confined systems, allowing for an easier study of the con-
nection between the asymptotic behavior of the S matrix
and the location and residues of the bound states of the
problem.

The plan of this paper is as follows. Section II is divid-
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ed into three parts which contain, respectively, definition
of the "S matrix" S for a confining potential, discussion
of the two-point function II, treatment of an example, the
harmonic oscillator, and a more general derivation of the
identity of the two functions. In Sec. III we show how
understanding of the asymptotic series for S can be used
to extract any short-range terms in the potential and hence
the (low-lying) bound states upon which this piece of the
potential has an influence. Since only the leading few
terms of the asymptotic behavior are ever known in prac-
tice, we develop an ansatz for dealing with them, which
takes into account crude features of the short-range poten-
tial, as seen through the leading asymptotic behavior.
This is a kind of effective-range theory, and we discuss it
in Sec. IV. Section V contains some conclusions.

In previous work we have shown how one can develop
linear trajectories starting with a naive bag model as a
zeroth-order approximation. In this work our attitude is
to take linear confinement, i.e., confinement which gives
linear Regge trajectories, as a starting point and to calcu-
late the effects of short-range forces. In fact, as this work
indicates and as we show in forthcoming work with a de-
tailed example, the confining part of the potential must be
independently known if the spectrum is to be determined
from limited asymptotic information. Although QCD is
surely not describable by a local potential, the present
study has direct relevance to QCD because in that theory
too there is a confining interaction and a perturbative
short-range modification, because the duality principle
discussed here is analogous to those used in QCD sum
rules, and also because effective potentials have been so
useful in quarkonium phenomenology.

II. THE SCATTERING MATRIX
AND THE TWO-PGINT FUNCTION

S(v,E)= lim
u ( —v, R)

R~oo u vR
(2.4)

can be regarded as the generalization of the S matrix for a
confining potential. It obeys a form of unitarity, namely,

S(v,E)S( v, E—)=1 . (2.5)

As an example we can consider the harmonic oscillator,
with V(r) = , co r,—whose regular solution is

+i/2 —.2/4 & v+1 ~ 2

I (v+1) co

I ( —q/2+(v+1)/2)

—(g+v+ 1)/2

g —1/2ecoR /4 (2 7)

and hence

A. QS=
2

I ( —(rl —1)/2+ v/2}I (1—v)
I ( —(g —1)/2 —v/2)I (1+v) (2.8)

This function has poles when

1 v+ + = —fPl, Vl =0,1,2, . . .
2 2 2

(2.6)

wh«e C is the confluent hyper geometric function,
g—:E/co, and we have chosen mass = —,'. For large R
(R »co '),

E =co(2m +v+ 1 ) =co(2m + I + —, ) . (2.9)
A. "Scattering matrix" for a confining potential [The additional fixed poles in v at (unphysical) integer

values of v are associated with the positivity of the resi-
dues of the moving poles in E.] Another example is the
spherical well of radius R. There (see Sec. IV)

J „(kR) I.(1
2 J,(kR) I'(1+v)

The radial Schrodinger equation

(2.1)u +k u = V(r)u,
p 2

where v= l + 2, has unrenormalized solutions u (v, r, k) (in
the following we often suppress the argument k ) behaving
near r =0 like'

u (v, r) =v "+'~ [1+0(r )] . (2.2)

For v positive this solution is regular, and for v negative
it is irregular. We conventionally take v positive in the
following, so that u (+v, r) are regular/irregular solutions.
For V(r) confining, V(r)~, oo, the spectrum is purely
discrete, E„=k„.The solution which vanishes at a large
r=Ris

—2v=u (v, r}u'( —v, r) —u'(v, r)u ( v, r) . —(2.11)

d u( —vr) 2v
dr u (v, r) u ~(v, y )

(2.12)

u(v, r;R) =u ( v, r) 'u (v, r),— —u( —v, R)
u (v,R)

(2.3)
and by integration

with poles at the zeros of J' (kR).
An alternative form for S follows from consideration of

the Wronskian W{u (v, r), u { v, r)), which for two—solu-
tions of the Schrodinger equation (2.1) must have the con-
stant value —2v:

and it is an eigensolution if it is regular at the origin. This
is possible when the coefficient of u(v, r) has a pole. We
see that the function

u( v, R) u( v, E) J~——dr
u (v, R) u (v, e) ~ u2(v, p. )

or, using Eq. (2.2),
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S(v) = —2v f d»
u (v, ») r 2V+1 (2.13)

so that

u„(v, ») =a„(v)u (v, », k =k„) . (2.18)

The second term in the integral serves only to regularize
the integral and cannot give rise to poles in S(v). Equa-
tion (2.13) shows directly that if u (v, ») vanishes at infini-

ty, S will indeed have poles.
Equation (2.13) is of course consistent with the general

condition for high-lying bound states in the WKB approx-
imation. Let us write

We define the two-point function for fixed v by

2v[a„(v)]
11(E,v)= g

n=0 n

(2.19)

The factor 2v=2l + 1 is a statistical weight for the "width
factor" that appears in the numerator. For I =0 the spec-
tral sum is just"

V(») = + V(»);
r

/R„(0)
illo(E)= g

n=0
(2.20)

V(») is the effective potential. Between the turning points
A and B, A (B, defined by

E = V(A) = V(B),

the regular wave function is

u (v, ») =[E—V(»)] '~ cosg (»),
(2.14)

where

R„(0)=(1/»)u„( ,', ») ~, —

is the radial part of the wave function at the origin. Mo-
ments of Eq. (2.20) have been of recent interest: The non-
relativistic version of the QCD sum rules of Vainshtein
et al. involves

g(») = f d»'[E —V(»')]

We use this form in the relevant part of Eq. (2.13) to find

dg 1S=—2v dr
d» cos g(»)

iR„(0)
/

M(p, E)= .=o (I+«./E)"+'
P

p I d=EJ' IIp(E) s(p .
p! dE

(2.21)

= —2v[tang (B)—tang (A)] .

This function has poles when g (B)=(n + —,
'

)r», or

f d»'[E —V(»')]'"=(n + —,
'

)m .

(2.15)

(2.16)

These have been studied in the Born approximation by the
authors of Ref. 5 and more extensively by Bell and
8ertlmann.

C. Connection between S and II
For large n this is the usual WKB eigenvalue condition.

B. Nonrelativistic two-point function

In this part we consider eigenfunctions of the
Schrodinger equation (2.1), denoted by u„(v, »). These
behave at r =0 like [a„(v)] =2

2

' v+1
r(v+ n+1)

r(n +1)r'(v+1) (2.22)

We establish the identity of these two functions in this
part, beginning with the example of the harmonic oscilla-
tor. By normalizing Eq. (2.6) and using Eq. (2.9) for the
eigenvalues we find

u„(v, ») =a„(v)»"+'~ [1+0(»z)],

and are orthonormal,

f d» u„(v, »)u (v, ») =5~„.
0

(2.17)

v
co + I (v+n +1) 1

o I (n+l)vt (v) 2n+v+1 —g
The index n specifies the energy eigenvalue. These func-
tions differ from the u (v, ») in that they are fully normal-
1zed,

f d»
~

u„(v, ») ~'=1,

(2.23)

To obtain the required sum, we rewrite the last equation
as

II(E,v) = CO

2

v
2 I ((v+1—g)/2+1)I (v+1+g)I ((v+1 g)/2+n) —1

I (v)(v+1 —g) „p I ((v+1—q)/2+ I+n)l (v+ l)l ((v+1 —g)/2) n!

The sum is now recognized as a hypergeometric series:

II(E,v) = CO

2
2 v+ 1 —'g v+ 1—'g (2.24)
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co I ( —v)I (1—il+v)/2)
,

2 I (v)I ((1—g —v)/2)
(2.25)

1=A„(v)f
R=A„(v) I dppJ (k„Rp) . (2.33)

Up to an (uninteresting) factor of —1, this is precisely S
for the harmonic oscillator, Eq. (2.8). Note that while for-
mally the sum (2.23) does not exist, ' its development
through Eq. (2.25) defines it by analytic continuation.

To demonstrate this result more generally we relate two
forms for the Green's function GE(r, r') for the
Schrodinger operator

The last integration can be performed if v & —1 and gives

4k„
A„(v)=, , v) —1 .

m.R [J' (k„R)]
(2.34)

We assume A„(v) is defined for negative v by analytic
continuation from Eq. (2.34). Note that since
J„(k„R)=0,

~(r)—=
dr

satisfying

r 2

1

4 —V(r),
J„'(k„R)=J i(k„R)=J +i(k„R) .

For large values of n and fixed v, the nth zero of J„,k„R,
behaves like

[W(r)+E]GE(r, r') = —5(r r') . —
On the one hand,

Q~ v~r Q~ v~r
Gz(r, r') =

n n

(2.27)

(2.28)

k„R (n +——,v ——,)m+0.1 1 1

&[n'+ —,(v+1)—~ ]n. , (2.35)

where u„(v, r) are the eigenfunctions [Eq. (2.18)], and on
the other hand,

so that a zero of J„will not be a zero of J,+i, and A„(v)
will have no poles for integer values of n. To find a„(v),
we need the threshold behavior of Eq. (2.32). We get

GE(r, r') =+ [ u (v, r)u(v, r';R)0(r' r)—
2v

+u (v, r')u(v, r;R)8(r —r')], (2.29)

a„(v)=A„(v)—
4 I (v+1)

k„
2v —1

where the u (v, r) are the regular solutions, as in Eq. (2.2),
and the u(v, r;R) are the solutions which vanish at R [Eq.
(2.3)]. For R —+ ao and r & r',

u„(v, r)u„(v, r')

2Y

= 2 1 k„
R [J„'(k„R)] I 2(v+1)

(2.36)

The asymptotic behavior of J„'(k„R)for large argument is
1/2

0(1),
1=+ u (v, r)[u ( v, r') S(v,E)u—(v, r')]—. (2.30)

[a„(v)]
lim [r' "—S(v,E)] .

2v r'~0 (2.31)

We multiply Eq. (2.30) by r " '~ and let r +0, then—
multiply the result by r' ' and let r' —+0. From Eqs.
(2.2) and (2.18) we find

where O(1) means a cosine function. All in all, the sum-
mand of the left-hand side of Eq. (2.31) behaves at large n
like k„',which gives a convergent series for negative v.
Assuming there are no natural barriers at v=0, and there
are none for potential scattering, the negative-v result can
then be used to define the two-point function for positive
v. We have thus established that

11(E,v) = —S(v,E) (2.37)

u„(v, r)~A„(v)rj „ i~2(k„r),

where k„ is determined by

j ig2(kR)=(W/2kR) J (kR)=0,

(2.32)

and E„=k„.A„(v) is determined from Eq. (2.32) by the
normalization condition

For negative v the right-hand side exists and is
—(1/2v)S(v, E). To understand the left-hand side we
need to understand the convergence of the series for nega-
tive v. We first note that the particle becomes free in a
box of dimension R, the parameter of S, when n ~ oo. In
other words, for large n

for confining potentials, making clear the crucial role
S(v,E) plays in determining the bound states of a confin-
ing potential.

III. EFFECTS OF SHORT-DISTANCE
PERTURBATIONS

In this section we work with the "Smatrix" S defined
for confining potentials in Sec. II in order to see how a
short-range component to the potential affects the asymp-
totic behavior of S as well as the properties of the low-
lying bound states. Such a component will necessarily
have parameters associated with it describing the short-
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V(r) = Vl. (r)+5V(r), (3.1)

range scale and the strength. As we shall see, these pa-
rameters describe certain analyticity properties of the re-
sults.

We suppose

u"— u +Eu = V(r)u,
pg

2

1

w+Ew = VL (r)w,
p 2

(3.2)

(3.3)

where the range scale for the short-range perturbation
5V(r) will be taken as ro. We work with the radial part of
the Schrodinger equation, and with solutions satisfying

and Eq. (2.2) for the small-r behavior. We can establish
by standard methods that u satisfies the integral equation

T

u (v, r) =w (v, r)+ f dr'5V(r'}u (v, r')[w (v, r)w ( v,—r') w—( —v, r)w (v, r')] .
2v

(3.4)

Equation (3.4) can be rewritten

u (v, r) =A (v, r)w (v, r)+ B(v,r)w ( v,—r),
where

r
A(v, r)=1+ dr'5Vu(v, r')w( v, r'), —

2v

P

B(v, r) = — f dr'5V u (v, r')w (v, r') .
2v

(3.5)

(3.6)

the integrals in A and B, Eqs. (3.6), are well defined and
small compared to unity. Thus A( —v, R)/A(v, R) gives
no poles, and we can concentrate on the first factor in
S(v}. In this form it is clear that A, , which is small, mea-
sures shifts in pole parameters, since the zeros of w(v, R}
in the large-R limit fix the poles of So(v).

To study this question we suppose the poles of the un-
perturbed system are at E =E„,w (v, R,E„)=0, so that for
E near E„,

We have w (v, E)=w'(v, E„)(E—E„), (3.11)

S(v)= lim S(v,R)= lim
u( —v, R)

u(v, R)
(3.7) w( —v, E)=w( v,E„)+w—'( —v, E„)(E—E„) . (3.12}

So(v)= lim
w( —v, R)

w(v, R)
A useful parameter will be

(3.8)

Note that in the absence of a short-range perturbation,
Here and in the following we have suppressed the label R
and the prime means differentiation with respect to E.
We find that to 0 [A,(v)],

D = [w'(v, E„)+A(v)w'( v,E„)]—
B(v, R)

~ A(v, R)
in terins of which

(3.9)
w ( —v, E„)E E„+A.(v)—
w'(v, E„)

This function has poles at

(3.13)

S(v,R) = w( v, R)+A( —v)w(v—,R) A( —v, R)
w(v, R)+A, (v)w ( —v, R) A (v,R)

N A( —vR)
D A(v, R)

(3.10)

In the sense that 5V is small and is not singular as r~O,
I

EO
E„"'=E„'—X(v)

w'(v, E„)
(3.14)

To find the residue, we evaluate N at this value of E„"',
using (3.11) and (3.12). We then find for S the result, to
0 (A, ), or 0 (5V),

S= 1 w ( v,E„)—
E —E„+A(v)w ( v, E„)/w'(v, E„)—w'(v, E„)

w'( —v,E„)
X 1 —2A, (v)

w'(v, E„)
Rf dr 5V[u ( v, r)w (v, r)+u (v, r)w ( —v,r)]— (3.15)

The factor w( v, E„)/w'(v, E„) is ju—st the residue for the case of no short-range correction; the term in large
parentheses gives the effect of such a correction. The last factor in the large parentheses comes from the expansion of
the factor A ( —v, R)/A (v, R). For small 5V we should take A(v) =B(v)=0(5V). It is also useful to note that the last
term in Eq. (3.15) can be written

Rf dr 5V[u ( v, r)w (v, r)+u (v, r)w ( v,—r)] =A(v) —A ( —v) . —
2v

(3.16)
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Thus to O(5V),

1 w ( —v,E„) w ( —v~En )S= 1 —[A (v) —& ( —v)] —2&(v), pE —E„+8(v)w ( v, E—„)/w'(v, E„) w'(v, E, ) w ("En )

~
~

Another form of S is useful for studying the high-energy behavior. Let us define

D(v) —=& (v)+& (v)Sp(v) ~

Then

D( v)S(v) =Sp(v)
D(v)

(3.17)

(3.18)

(3.19)

and the factor D( v)/D—(v) provides corrections to the high-energy behavior of Sp(v). We have from examination of
Eq. (3.18)

R w( —v, R)D(v)=1+ f dr 5V u (v, r) w( v, r) ——' w (v, r)
2v w(v, R)

(3.20)

u (v, r) should be replaced by w(v, r) in Eq. (3.20) for 5V
small.

We have outlined in this section a connection between
poles, residues, and asymptotic behavior, when a short-
distance potential perturbs a longer-range confining poten-
tial. The results provided here form in principle a calcula-
tional scheme complete in itself.

Direct application of these formulas is analytically in-
tractable for technical reasons. We can illustrate this best
through an example:

—pr
V(r)= , co r +g-

r
(3.21)

X g A„J„+„(kr),
n=0 2k

where the A„can be determined recursively by

Ap ——1, 2 i ——0, A2 ———,(v+ 1),
1 k(n+ v)A„ i-n+1 Q)

(3.22)

(3.23)

While the series (3.22), written as a power series in 1/k,
does converge, at least asymptotically, at large k, it does
so very slowly. Moreover, the two integrals required in
Eq. (3.20) cannot be evaluated in closed form even term by
term in the expansion (3.22).

In the face of these difficulties, let us not lose sight of

The long-range part VL, of the potential, a harmonic oscil-
lator, gives linear Regge trajectories. The solution to the
Schrodinger equation corresponding to this piece of V(r)
is given by Eq. (2.6), with large rbehavi-or of Eq. (2.7).
The large-r behavior fully determines So, but to find the
O(g) corrections we need to use w(v, r) over the range of r
where 5V is important. Finite integrals over confluent hy-
pergeometric functions are quite formidable. Even at
large k we have from Eq. (2.6)

—V

w (v, r) — r'~ — I (v+ —,
'

)
k~co 2

n

our ultimate aim. We are not interested per se in still
another method of solving the Schrodinger equation. In-
stead, we want to be able to relate the asymptotic behavior
of the two-point function determined by perturbative
calculations of field theory —to the positions of bound-
state poles. We assume we know the long-range behavior,
presumably linear confinement according to some definite
calculation in QCD. In other words, we assume we know
the asymptotic behavior of Sp, say from this definitive
QCD calculation. We have in previous work shown how
this behavior leads to a definite set of poles, e.g., linear
trajectories. We may also know some corrections to the
asymptotic behavior of Sp coming from a perturbative
calculation of two-point functions; this behavior includes
short-distance corrections. We want a scheme which gives
the corresponding corrections to the pole positions and
residues. Using the results of this section as a guide, we
develop in the next section an ansatz which leads to the
desired result.

IV. ANSATZ FOR SOLUTION

5V(r)= —g e (4.1)

with VL
——0 for r &8 and infinite for r & R.

The regular wave function corresponding to VL is

Since we cannot analytically perform the integrations of
Sec. III, we attempt here to construct a form for S(v)
under simpler assumptions, then to generalize this form to
more complicated cases, taking into account constraints
which follow from those simpler assumptions. Our pro-
cedure is to work out the S matrix for a particular short-
range potential incorporating a strength and a range, but
this time embedded in a spherical cavity rather than in a
harmonic oscillator. We shall see certain analyticity prop-
erties appear which should be general. We then generalize
the results to the form dictated by Sec. III, this time in a
general long-range background potential. All of this can
be adequately illustrated for the S-wave case, v= —,', and
we shall work this case out in some detail for the example
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w (v, r) = I (1+v) — r ' J„(kr),
k

(4.2)
and

and in particular

w ( —,, r) =—sinkr, w ( ——,, r) =coskr . (4.3)
k

When we add 5V to VL, the Schrodinger equation is
solved for v=+ —,

'
by

2g —pr/2
+2ik/p

p
where Z is any Bessel function. In order to find the ap-
propriate combinations giving regular and irregular solu-
tions we require

d u(v= ——,, r) ~o,
dr r~0

(4.5)

2g —pr/2~ +2ik/p
p

since a solution must generally behave as Eq. (2.2), for
nonsingular 5V. ' These conditions mean that u(v, r)
must be a linear combination of

r, v=+ 2~
u (v, r)—

r +0 1, V= —2,
(4.4)

with relative coefficients determined by Eq. (4.4) for
v=+ —,

' and (4.5) for v= ——,'. This gives us

1 —pr/2( 2 ) @+ ~2iklp ~ 2~k/p-
p p

2g 2g"(—T»= —g&- ~zai„
p p

—pr/2~—2ik/p J2ik/p
p p

I 2g 2g pr/2I—2ik /p J2ik /pp p

(4.6)

The prime refers to differentiation with respect to the
variable y=(2g/p)e &"~, evaluated at r =0. The con-
stants K+- are

I (1+2ik/p, )I (1—2ik/p)
+ 2ik

Note ihe correct limit

u(+ —,', r) ~ w(+ —,', r) .
g —+0

(4.7)

W(u( —,,r), u ( ——,,r)) = —2v= —1 . (4.8)

Note also that with the solutions (4.6) and (4 7), we au-
tomatically satisfy the equation for the Wronskian:

I

tions in Eq. (4.6). To 0 (g ) we find

—pR
u( —,,R)= w( —,,R) 1 —g

1 1 2 1+e
p +4k

+w( ——,,R)— 2

2(1 —PR)

p p +4k

u( ——,,R)= w( ——,,R) 1+g 2 2

—pR

p +4k

2 2k—w( —,',R) 1+ (1—e " )
p +4k p

(4.10)

This requirement could indeed be used to determine the
product 4'+4', and it will play an important role in the
generalization of our results.

We can form

u ( ——,',R)S= lim
u ( —, ,R)

to study its poles and large-k behavior. We are interested
not in the exact results but in the expansion to lowest or-
der in g in order to compare with the results of Sec. III.
I.et us begin with a reminder of Sp for the long-range por-
tion of the potential:

where the wave functions w(+ —,',R) corresponding to the
long-range potential are given by Eq. (4.3). Note that Eq.
(4.10) is exactly the form derived in Sec. III, viz. (3.15),
where

(vu, r)= ( wr)v[1+0(5V)]+ ( wv, r)O(5V—) .

Since by "short range" we mean pR &~1, we can safely
drop factors e " in Eq. (4.10).

S can now be written in the canonical form

u ( ——,',R)S=
u (-,',R)

coskrSo=k . ——ik (Imk ~0) .
sinkr k

(4.9)

For S, we are interested in the 0 (g ) expansion. To do
this, we use the power-series expansion of the Bessel func-

Sp 1+
p +4k p p +4k k

g w 2 g+S ——--
p+4k p p+4k

(4.11)
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Here

w ( ——,,R)
—=k cotkR

w ( —,',R)

is the S matrix for the unperturbed cavity; its large-k
behavior is just ( ik—) A.t finite k, the poles of S, i.e., of
the perturbed cavity, can be read off from Eq. (4.11).
These poles are the zeros of the denominator; the poles of
So cancel top and bottom and the numerator has no other
poles for physical k . Note the analytic structure at
k = —

4 p, which is a correct reflection of the exponen-
tial potential and will play a role in our ansatz. In old S-
matrix language these were left-hand singularities.

The asymptotic behavior of S is easily computed from
Eq. (4.11). We denote this limit of S by S~ for conveni-
ence:

2 2

Sz ——lim ( —ik) 1+ z 2 1+ . +O(g )k~ 00 pal+4k 2 2ik

tirely on the short-distance expansion of the potential.
Csiven that the leading short-range terms in r come from
the perturbing potential alone, the coefficients f; and g; to
a corresponding value of i could then be determined by
seeing the effect of that short-range potential in a cavity.
For example, we have found for the exponential potential
at v= —,

1

go(v) —go( —v) =0 (4.15)

go( ~ )=2=go( ——» gi( z )=o* g;( ——,')=1,
fo( —, ) = —1=—fo( ——,

'
), fi( —,

'
) =0=fi( ——,

'
) .

We have included the factor (+k ) in (4.13) because we
know the general asymptotic form of S(v) leads with
(+k ) . This is in accordance with Eq. (4.10). Also, we
know that if 6V is nonsingular at the origin, then the
asymptotic behavior of S will have structure
-(+k )"[I+O(l/k )], i.e., there is no O(1/k) term.
This requires us to have

2 2 2 2
=(—ik) 1+ + —— + +. . . +O(g')

2k 4ik 8k

(4.12)

In our example, this is in fact the case; Eq. (4.12) has no
O (1/k) term, and go fits Eq. (4.15).

Restrictions on the fo(v) follow from the consideration
of the Wronskian O'. We have

The factor ( —ik) is the full asymptotic behavior of So, up
to exponentials in k. If an experimental measurement of a
two-point function were involved, only ImS& would
count. We see by examining the first few terms of (4.12)
that if we knew So, then we could deduce the parameters
of the short-range perturbation from the asymptotic
series, and even deduce whether the short-range perturba-
tion has a short-distance expansion identical to the expan-
sion of the exponential. This follows because' powers of
a potential r" correspond to asymptotic behavior in S in
the form a /k" + +6/k" + +..... Here the 0 (r ) term in
an expansion of e ""leads to a first correction of O(k ).

We can now make an ansatz for the general large-R
form of the wave function to O(g ) in a general long-
range background, namely,

u(v, R)= w(v, R) I+F(v)
p +4k

(+k2)1/2 2

+w( —v,R)(+k ) -G(v)
p p +4k

(4.13)

where for large k
Pl Pl

G(v)= g g„(v)
n=0

(4.14)

This gives a generalization of S corresponding to Eq.
(4.11). In our ansatz we have incorporated the singularity
structure at k = ——,p of Eq. (4.10); this structure should
reflect 5V alone. The choice of the f; and g; depends en-

8'(w(v, r), w( v, r))= ——2v= W'(u(v, r), u( —v, r)) . (4.16)

To O (g ), Eq. (4.13) shows that this requires

E(v)+F( —v) =0
or

f;(v)+f; ( —v) =0 . (4.17)

This is a nontrivial restriction; analogous restrictions on
the g;(v) do not exist to O(g ), and consideration of the
O(g ) results would be required to find them. Our exam-
ple is consistent with Eq. (4.17). The restrictions provided

by the Wronskian show that S of the form of Eq. (2.4),
obeying (2.5), is for our purposes unique. To see this, sup-
pose u(v, r)~u(v, r)=h(v )u(v, r), a shift which leaves
S=u( —v, R)/u(v, R) invariant. By our Wronskian con-
dition, however,

W(u (v, r), u ( v,r))—
= W(u(v, r), u( —v, r))

=h (v )W(u(v, r), u( —v, r))

or

h (v )=1.

a ibS„=(—ik) 1+
k k

(4.18)

We consider this as the input, and we shall assume the
confining potential gives linear (or more slowly rising)
asymptotic trajectories. This last assumption means that

To see how all this works, let us consider a simple ex-
ample, namely, suppose the asymptotic behavior of the
two-point funct1on for v=

2 1s
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the confining potential behaves as r ", n ) 1, or
equivalently that So behaves at large k as

E(]) Eo 2a 4 Eo
4b'la'+4E„' p&

(4.23)

1So=( —ik) 1+0 2' +2 n &1. where

Thus a and b determine the constant and linear terms in
the small-r expansion of the perturbing potential. Thus a
and b determine the strength g and range p of a perturb-
ing potential like g =e "". In fact, from Eq. (4.12), we

or

(&) 1so(E„)=
E. —E. (dldZS, -'(Z)

~

n

(4.20)

Substitute Eq. (4.20) into (4.19) with D =0, substituting
E„=E„' ' everywhere except (4.20), and expand to O(g ).
The result is

(r) 0 2

p C '+4E' (dldZS, -'(Z)
~

Equation (4.21) gives us for our example of the exponen-
tial in a long-range oscillator

4~ I ( —, +E„/2'�)
4b'la'+4E„' ~p I ( —,

' +ED/2~)

(4.22)

where we recall [Eq. (2.9)] that

E„=2'(—,
' +n) .

This can be com.pared with the attractive short-range ex-
ponential in the cavity, for which

2b
g =2a~ p=-

a

To determine the shift in pole positions, we need to
know G(v) at finite values of k . We take these from the
(constant) values given in Eq. (4.10). Physically this is
reasonable because the shift in a bound state due to a
short-range perturbing potential cannot depend on any-
thing other than the behavior of the confining potential
near the origin. In our example, then, from Eq. (4.10)

G( —)=-2 .2

Equation (4.13) now gives us the shifted pole positions
and residues. For example, we could find the shifted poles
to 0 (g ) from Eq. (3.14), or better, we could work directly
with S as in Eq. (4.11),whose poles at E„"'are determined
by the zeros of

D =1— — -+5 ———g w 2 g
@+4k p p+4k

To find the new energy levels E„' ' we expand So around
the unperturbed levels E„=k„.We have

0 7Tn
8

For both cases (long-range cavity and long-range harmon-
ic oscillator) the behavior of S~ is identical to 0(1/k );
the differences in the pole positions —Eqs. (4.22) and
(4.23) ome from one's understanding of the confining
force, which leads to different So. For the cavity So was

k cotR, and for the oscillator So was

I ( 4 E/2c—o)
+2co .

I ( 4
—E/2')

Our ansatz represents a kind of twist on effective-
energy theory. We use the high-energy behavior to deter-
mine two parameters with dimensions of length, namely,

p ' and g '. These parameters in turn affect pole posi-
tions. In phrasing our ansatz as an effective-range theory
we want to emphasize that use of a Schrodinger equation
with a definite potential is not an essential feature.

V. CONCLUSIONS

We have investigated the properties of a nonrelativistic
two-point function which contains information both on
the bound states of a confined system and on asymptotic
behavior of that system. The Green's function used in
studying earlier sum rules is a special S-wave case of this
two-point function.

This two-point function is completely equivalent to an

analog to the S matrix, S, for confined systems. Since we

have shown that S is a summation over the poles of the
system, and since S transparently displays the asymptotic
behavior, we are led to a constructive program for under-
standing the bound states of QCD. Both experiment and
many studies of confinement in QCD suggest that bound
quarks lie on linear Regge trajectories. This gives us, us-
ing the results of this and earlier papers, a zeroth-order
starting point both for the bound-state poles and the
asymptotic behavior specified by So. But we can indepen-
dently calculate the asymptotic two-point functions in
QCD using perturbation theory, thanks to asymptotic
freedom. To the extent this behavior differs from that of
So, we modify the properties of the low-lying bound
states. Such modification is a manifestation of short-
range forces between the constituents.
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